Persistence properties for the dispersion generalized BO-ZK equation in weighted anisotropic Sobolev spaces
نویسندگان
چکیده
In this paper we study the initial-value problem associated with dispersion generalized-Benjamin-Ono-Zakharov-Kuznetsov equation,ut+Dxa+1∂xu+uxyy+uux=0,a∈(0,1). More specifically, persistence property of solution in weighted anisotropic Sobolev spacesH(1+a)s,2s(R2)∩L2((x2r1+y2r2)dxdy), for appropriate s, r1 and r2. By establishing unique continuation properties also show that our results are sharp respect to decay x-direction.
منابع مشابه
The Ivp for the Dispersion Generalized Benjamin-ono Equation in Weighted Sobolev Spaces
We study the initial value problem associated to the dispersion generalized Benjamin-Ono equation. Our aim is to establish well posedness results in weighted Sobolev spaces and to deduce from them some sharp unique continuation properties of solutions to this equation. In particular, we shall establish optimal decay rate for the solutions of this model. RÉSUMÉ. Nous étudions le problème de Cauc...
متن کاملStability and Decay Properties of Solitary Wave Solutions for the Generalized Bo-zk Equation
In this paper we study the generalized BO-ZK equation in two dimensions. We classify the existence and non-existence of solitary waves depending on the sign of the dispersions and on the nonlinearity. By using the approach introduced by Cazenave and Lions we study the nonlinear stability of solitary waves. We also prove some decay and regularity properties of such waves.
متن کاملThe Kawahara equation in weighted Sobolev spaces
Abstract The initialand boundary-value problem for the Kawahara equation, a fifthorder KdV type equation, is studied in weighted Sobolev spaces. This functional framework is based on the dual-Petrov–Galerkin algorithm, a numerical method proposed by Shen (2003 SIAM J. Numer. Anal. 41 1595–619) to solve third and higher odd-order partial differential equations. The theory presented here includes...
متن کاملIsotropically and Anisotropically Weighted Sobolev Spaces for the Oseen Equation
This contribution is devoted to the Oseen equations, a linearized form of the Navier-Stokes equations. We give here some results concerning the scalar Oseen operator and we prove Hardy inequalities concerning functions in Sobolev spaces with anisotropic weights that appear in the investigation of the Oseen equations. Mathematics Subject Classification (2000). 76D05, 35Q30, 26D15, 46D35.
متن کاملOn the Persistence Properties of Solutions of Nonlinear Dispersive Equations in Weighted Sobolev Spaces
We study persistence properties of solutions to some canonical dispersive models, namely the semi-linear Schrödinger equation, the k-generalized Korteweg-de Vries equation and the Benjamin-Ono equation, in weighted Sobolev spaces Hs(Rn) ∩ L2(|x|ldx), s, l > 0.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2021
ISSN: ['1090-2732', '0022-0396']
DOI: https://doi.org/10.1016/j.jde.2020.11.013